International Macroeconomic Comovement

Costas Arkolakis

Teaching Fellow: Federico Esposito

February 2014

Outline

- Business Cycle Fluctuations
- Trade and Macroeconomic Comovement
- What is the Cost of Business Cycles?
- Major Recessions

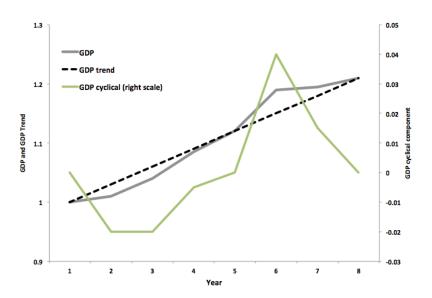
Business Cycle Fluctuations

Motivation

Business Cycle: The period of expansions and contractions in the level of economic activity around its long-run growth trend.

Open Economy Macroeconomics

Development of a workhorse model that can serve as a laboratory for policy analysis.


- What are the features of the model that make it successful with the data?
- Extending predictions related to the closed economy macro models.

Measurement

Focus on high frequency movements

- Low frequency (long-run) versus high frequency (short-run)
- Construct cycle component that corresponds to high frequency movemements of economic variables (GDP, consumption, investment, employment etc)
 - Linear detrending or Hodrick-Prescott (HP) filter
 - De-trended data: Actual data minus trend component

Example of Linear De-Trending

Trend of GNP with an HP filter

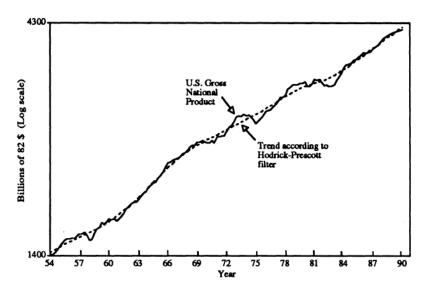


Fig. 1.—Example of a U.S. time series detrended with the Hodrick-Prescott filter.

Macroeconomic Comovement

Heathcote Perri (2002): US vs. Canada+Japan+15 European countries

logged and HP filtered data

Main macroeconomic variables are positively correlated.

(C) Cross country				tive price volat	•	1	
Economy	correlation between				% std. dev.		
	<i>y</i> 1, <i>y</i> 2	ℓ_1,ℓ_2	x_1, x_2	11,112	P	rx	
Data	0.58	0.36	0.30	0.42	2.99	3.73	

- GDPs more correlated than consumption.
- Investments (x); relatively low correlation.

Trade and Macroeconomic Comovement

Trade & International Business Cycles: Cross-Sectional Evidence

- Is trade the main link?... GDP correlation is linked to trade.

Figure: Kose and Yi (2006). Trade and International Business Cycles Correlation



Fig. 1. GDP correlation and trade intensity.

Relationship Between Trade and Comovement

Kose & Yi (J of International Econ, 2006, "Can the standard international business cycle model explain the relation between trade & comovement?")

Authors look how GDP correlation is changing with trade

GDP
$$\mathit{Corr}_{ij} = eta_0 + eta_1 \ln \left(\mathit{Trade}_{ij} \right) + arepsilon_{ij}$$

where i, j are different trade partnerns (e.g., i = USA, j = FRA etc)

Relationship Between Trade and Comovement

Kose & Yi (J of International Econ, 2006, "Can the standard international business cycle model explain the relation between trade & comovement?")

Authors look how GDP correlation is changing with trade

GDP
$$\mathit{Corr}_{ij} = eta_0 + eta_1 \ln \left(\mathit{Trade}_{ij} \right) + arepsilon_{ij}$$

where i, j are different trade partnerns (e.g., i = USA, j = FRA etc)

- Coefficient $\beta_1 \simeq .08$. Thus, doubling trade increases correlation of GDP by $.08* \ln{(2)} = .055$ higher GDP correlation among the country pair
- Relationship first uncovered by Frankel and Rose (1998, Economic Journal, "The endogeneity of the optimum currency area criteria")

Output fluctuations: Evidence from the US-Mexico trade Agreement

US-Mexico output fluctuations seem to be more correlated after the **N**orth **A**merican **F**ree **T**rade **A**greement. NAFTA went into effect on Jan 1st, 1994.

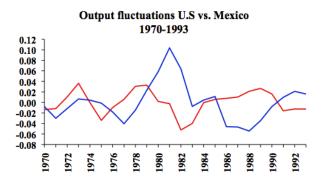


Figure: De-trended (HP filtered) US GDP vs Mexico GDP (blue: USA, red: Mexico) 1970-1993. Own calculations

US-Mexico output fluctuations

US-Mexico output fluctuations seem to be more correlated after NAFTA.

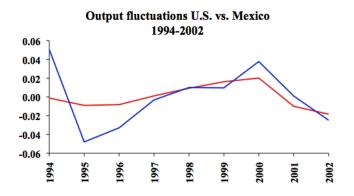


Figure: De-trended (HP filtered) US GDP vs Mexico GDP (blue: USA, red: Mexico) 1994-2002. Own calculations.

Trade-Comovement and Business Cycle Theories

Standard Business Cycle Theory has a problem accounting for the increased correlation due to increased trade.

- Kose & Yi, 2006
- Arkolakis & Ramanarayanan, 2009 (Scandinavian Journal of Economics, "Vertical Specialization and International Business Cycles Synchronization")
 - Propagation of shocks through trade is very weak.
 - Is it something else? (e.g., the financial system etc)

Conclusion: Trade and Business Cycles

Trade integration implies BC-comovement of countries.

- Is this good or bad?
- It is an important question given globalization, economic integration of European Union etc.

Conclusion: Trade and Business Cycles

Trade integration implies BC-comovement of countries.

- Is this good or bad?
- It is an important question given globalization, economic integration of European Union etc.

Positives

- Gains from increased specialization and trade.
- Economic upturn of one country propagates to others.

Conclusion: Trade and Business Cycles

Trade integration implies BC-comovement of countries.

- Is this good or bad?
- It is an important question given globalization, economic integration of European Union etc.

Positives

- Gains from increased specialization and trade.
- Economic upturn of one country propagates to others.

Negatives

- Harder to achieve risk sharing.
- Crisis of one country propagates to others.

What is the Cost of Business Cycles?

Lucas 2003: Macroeconomic Priorities

- What is the cost of Business Cycle Fluctuations?
 - Depends on a variety of factors: intensity of fluctuations, risk aversity, other preference parameters etc.

Lucas 2003: Macroeconomic Priorities

- What is the cost of Business Cycle Fluctuations?
 - Depends on a variety of factors: intensity of fluctuations, risk aversity, other preference parameters etc.
- How do we measure this magnitude?
 - Question: What is the effect on welfare if all consumption variability could be eliminated?
 - Consumer would prefer to minimize consumption fluctuation because she is risk averse.
 - Answer: Need to find what is the percent increase in his uncertain consumption in order to be indifferent with a deterministic outcome.

Utility Function and Risk Aversion

- What is the gain from eliminating Business Cycle Fluctuations?
 - Consider a representative consumer and the welfare gain from eliminating uncertainty in t years from now. Utility function:

$$U_t = eta^t rac{c_t^{1-\gamma}}{1-\gamma}$$

 β : discount factor, γ : coefficient of risk aversion. The higher γ , the more averse you are to fluctuations in your consumption. If $\gamma=0$, timing is not important.

Expected Utility

- What is the gain from eliminating Business Cycle Fluctuations?
 - Consider a representative consumer and the welfare gain from eliminating uncertainty in t years from now. Utility function:

$$U_t = eta^t rac{c_t^{1-\gamma}}{1-\gamma}$$

eta: discount factor, γ : coefficient of risk aversion. The higher γ , the more averse you are to fluctuations in your consumption. If $\gamma=0$, timing is not important.

• Example: two states of the world, s_1 and s_2 , with probabilites $\pi\left(s_1\right)$ and $\pi\left(s_2\right)$ where $\pi\left(s_1\right)+\pi\left(s_2\right)=1$. Expected utility:

$$EU_{t} = \beta^{t} \pi \left(s_{1}\right) \frac{c_{t} \left(s_{1}\right)^{1-\gamma}}{1-\gamma} + \beta^{t} \pi \left(s_{2}\right) \frac{c_{t} \left(s_{2}\right)^{1-\gamma}}{1-\gamma}$$

where $c_t(s_1) \neq c_t(s_2)$: consumption in the two states of the world.

Risk Aversion

- We will proceed below ignoring the discount factor (does not affect results)
- The utility function we consider has constant relative risk aversion
 - To see this, notice that relative risk aversion is given by

$$R(c) = -\frac{c \times U''(c)}{U'(c)}$$

$$= -\frac{c \times (-\gamma) c_t^{-\gamma - 1}}{c_t^{-\gamma}}$$

$$= \gamma$$

Risk Aversion: An Example

- Individuals are risk averse as long as $\gamma>0$. This means that they prefer the safe consumption than the risky one.
 - Formally

which is true as long as U is concave $\implies \gamma > 0$.

• Example: Consider two states $c\left(s_1\right)=1,\ c\left(s_2\right)=2$ with $\pi\left(s_1\right)=\pi\left(s_2\right)=0.5$ and $\gamma=0.5$. Then

$$\begin{array}{lll} 0.5 \times \frac{1^{0.5}}{0.5} + 0.5 \frac{2^{0.5}}{0.5} & < & \frac{\left(0.5 \times 1 + 0.5 \times 2\right)^{0.5}}{0.5} \implies \\ 0.5 \times 1 + 0.5 \times 2^{0.5} & < & \left(0.5 \times 1 + 0.5 \times 2\right)^{0.5} \end{array}$$

- What is the gain from eliminating Business Cycle Fluctuations?
 - Consider a representative consumer and the welfare gain from eliminating uncertainty.

- What is the gain from eliminating Business Cycle Fluctuations?
 - Consider a representative consumer and the welfare gain from eliminating uncertainty.
 - Simple calculations under a standard model would give that the welfare gain is $\simeq \frac{1}{2} \gamma \sigma^2$

- What is the gain from eliminating Business Cycle Fluctuations?
 - Consider a representative consumer and the welfare gain from eliminating uncertainty.
 - Simple calculations under a standard model would give that the welfare gain is $\simeq \frac{1}{2}\gamma\sigma^2$
 - Consider an individual that faces income uncertainty: $c_t=ar c arepsilon_t$, where $arepsilon_t$ is random

- What is the gain from eliminating Business Cycle Fluctuations?
 - Consider a representative consumer and the welfare gain from eliminating uncertainty.
 - Simple calculations under a standard model would give that the welfare gain is $\simeq \frac{1}{2}\gamma\sigma^2$
 - Consider an individual that faces income uncertainty: $c_t=ar c arepsilon_t$, where $arepsilon_t$ is random
 - Imagine that we could provide him with certainty $\tilde{c}_t = E(\bar{c}\varepsilon_t)$. What is the utility difference (say λ) that the consumer would experience?

- What is the gain from eliminating Business Cycle Fluctuations?
 - Consider a representative consumer and the welfare gain from eliminating uncertainty.
 - Simple calculations under a standard model would give that the welfare gain is $\simeq \frac{1}{2}\gamma\sigma^2$
 - Consider an individual that faces income uncertainty: $c_t=ar c arepsilon_t$, where $arepsilon_t$ is random
 - Imagine that we could provide him with certainty $\tilde{c}_t = E(\bar{c}\varepsilon_t)$. What is the utility difference (say λ) that the consumer would experience?
 - This λ is the gain from eliminating business fluctuations.

- What is the gain from eliminating Business Cycle Fluctuations? Find λ such that

$$\underbrace{\frac{\left[\tilde{c}_{t}\right]^{1-\gamma}}{1-\gamma}}_{\text{utility under certainty}} = \underbrace{E\frac{\left[\left(1+\lambda\right)c_{t}\right]^{1-\gamma}}{1-\gamma}}_{\text{expected ut. under uncertainty}} \Longrightarrow$$

where $\bar{c}\varepsilon_t$ is consumption with \bar{c} a certain component and ε_t a stochastic component.

- What is the gain from eliminating Business Cycle Fluctuations? Find λ such that

$$\underbrace{\frac{\left[E\left(\bar{c}\varepsilon_{t}\right)\right]^{1-\gamma}}{1-\gamma}}_{\text{utility under certainty}} = \underbrace{E\frac{\left[\left(1+\lambda\right)\bar{c}\varepsilon_{t}\right]^{1-\gamma}}{1-\gamma}}_{\text{expected ut. under uncertainty}} \Longrightarrow$$

$$\begin{array}{ccc} \frac{\left[\bar{c}E\varepsilon_{t}\right]^{1-\gamma}}{1-\gamma} & = & (1+\lambda)^{1-\gamma}\,E\frac{\left[\bar{c}\varepsilon_{t}\right]^{1-\gamma}}{1-\gamma} \implies \\ 1+\lambda & = & \frac{E\varepsilon_{t}}{\left(\left(E\left[\varepsilon_{t}\right]^{1-\gamma}\right)\right)^{1/(1-\gamma)}} \geq 1 \end{array}$$

where the last inequality follows from concavity (related to what we argued above for the utility)

Lucas 2003: The Numbers

- What is the gain from eliminating Business Cycle Fluctuations?
 - Simple calculations (log normal distribution) imply $\lambda \simeq \frac{1}{2} \gamma \sigma^2$ Putting numbers:
 - σ : In the US data 1947-2001 standard deviation of log consumption is 0.032.
 - γ : Macroeconomics and finance literature uses 1 to 4.

Lucas 2003: The Numbers

- What is the gain from eliminating Business Cycle Fluctuations?
 - Simple calculations (log normal distribution) imply $\lambda \simeq \frac{1}{2} \gamma \sigma^2$ Putting numbers:
 - σ : In the US data 1947-2001 standard deviation of log consumption is 0.032.
 - $oldsymbol{\gamma}$: Macroeconomics and finance literature uses 1 to 4.
 - Using these numbers:

Gains from Eliminating Business Cycles

$$\simeq \frac{1}{2} \gamma \sigma^2 = \frac{1}{2} \times 4 \times (0.032)^2 = 0.205\%$$
 of consumption

Is this number too small?

Lucas 2003: The Numbers

- Gain $<\frac{1}{2}\gamma\sigma^2=\frac{1}{2}\times4\times(0.032)^2=0.205\%$ of consumption
- Is this number too small?

Extremely small!

- Research has argued that gains from eliminating 10% inflation about 10 times higher
- Gains from higher capital accumulation > 2%.
- Gains from Trade (Arkolakis, Costinot, Rodriguez-Clare 2012) for the US: 0.7%-1.4%.
- Each of these calculations gives a number almost an order of mangitude larger than the gains from elliminating high frequency flucuations.

So Why do we Care about Fluctuations so Much?

Answer: mostly care about large fluctuations of output.

Major recessions could reduce GDP growth & propagate major shocks across countries.

Figure: real GDP growth (source World Development Indicators)

So Why do we Care about Fluctuations so Much?

World is becoming increasingly integrated.

Tighter trade links across countries make contagion more likely.

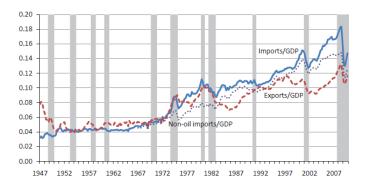


Figure: Post War US Trade to GDP (source: Levchenko, Lewis, Tesar '10)

What is the Welfare Cost of a Large Recession?

Similar to what we did before, we can reformulate the question as: "What fraction of annual consumption would a worker be willing to pay to set the current probability of encountering a Depression-like event to zero?"

 Turns out that large recessions are extremely rare events for developed countries (about once or twice every century).

What is the Welfare Cost of a Large Recession?

Chatterjee & Corbae, 2007 (Journal of Monetary Economics), compute the welfare costs of the great depression.

- Depends on the ability of smoothing consumption
 - If markets are complete, welfare loss is about 1%.
 - But with incomplete markets (recall: research on International Financial Markets), welfare loss might increase to almost 7%.